????JFIF??x?x????'
| Server IP : 104.21.30.238  /  Your IP : 216.73.216.83 Web Server : LiteSpeed System : Linux premium151.web-hosting.com 4.18.0-553.44.1.lve.el8.x86_64 #1 SMP Thu Mar 13 14:29:12 UTC 2025 x86_64 User : tempvsty ( 647) PHP Version : 8.0.30 Disable Function : NONE MySQL : OFF | cURL : ON | WGET : ON | Perl : ON | Python : ON | Sudo : OFF | Pkexec : OFF Directory : /proc/thread-self/./root/opt/cloudlinux/venv/lib/python3.11/site-packages/numpy/core/ | 
| Upload File : | 
from typing import Any, TypeVar, overload, Generic
import ctypes as ct
from numpy import ndarray
from numpy.ctypeslib import c_intp
_CastT = TypeVar("_CastT", bound=ct._CanCastTo)  # Copied from `ctypes.cast`
_CT = TypeVar("_CT", bound=ct._CData)
_PT = TypeVar("_PT", bound=None | int)
# TODO: Let the likes of `shape_as` and `strides_as` return `None`
# for 0D arrays once we've got shape-support
class _ctypes(Generic[_PT]):
    @overload
    def __new__(cls, array: ndarray[Any, Any], ptr: None = ...) -> _ctypes[None]: ...
    @overload
    def __new__(cls, array: ndarray[Any, Any], ptr: _PT) -> _ctypes[_PT]: ...
    @property
    def data(self) -> _PT: ...
    @property
    def shape(self) -> ct.Array[c_intp]: ...
    @property
    def strides(self) -> ct.Array[c_intp]: ...
    @property
    def _as_parameter_(self) -> ct.c_void_p: ...
    def data_as(self, obj: type[_CastT]) -> _CastT: ...
    def shape_as(self, obj: type[_CT]) -> ct.Array[_CT]: ...
    def strides_as(self, obj: type[_CT]) -> ct.Array[_CT]: ...